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ABSTRACT 

 

This article measures the degree of potential de-anchoring of inflation expectations in the euro area vis-
à-vis the inflation objective of the European Central Bank (ECB). A no-arbitrage term structure model 

that allows for a time-varying long-term mean of inflation expectations, π�
∗, is applied to inflation-linked 

swap (ILS) rates, while taking into account survey-based inflation forecasts. Estimates of π�
∗ have been 

close to 2% since the mid-2000s, indicating that long-term inflation expectations have overall remained 
well anchored to the ECB’s inflation objective. As this objective is however related to the "medium 
term", expectations components of various forward ILS rates are extracted: they appear to have been 
broadly anchored, with tentative signs of de-anchoring up to the two-year horizon. Using backcasted 

ILS rates, estimates of π�
∗ are much above 2% in the early 1990s, but they converge to levels below 2% 

by the end of the decade when the ECB was established. 
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NON-TECHNICAL SUMMARY 

 

The anchoring of inflation expectations is fundamental to ensure price stability, and 
macroeconomic stability more in general. As a result of the lessons from history (such as the 
costly re-anchoring of inflation expectations at low levels in the 1980s) and modern 
institutional set-up (inflation-targeting, independent central banks), inflation expectations are 
closely monitored, in particular medium-term inflation expectations as they are a direct 
measure of the credibility of the monetary policy of central banks. The post-pandemic 
recovery triggered renewed discussions on de-anchoring inflation expectations in a context 
of inflation rates last seen in the 1970s, while at the same time the ECB 2021 strategy review 
highlighted "the need for a comprehensive framework for assessing (un)anchoring" of 
inflation expectations. 

Speaking directly to the question of inflation de-anchoring in the euro area, this article 
proposes a no-arbitrage affine term structure model for inferring inflation expectations from 
market-based measures of inflation compensation. The novel feature of the model is that the 
infinite-horizon expected inflation rate is time varying (π�

∗). By contrast, standard stationary 

models feature a fixed endpoint (π∗), i.e. forecasts of the inflation rate are assumed to 
converge at any point in time to the same value.  

The model proposed in this article also considers the ECB’s survey of professional 
forecasters and the Consensus Economics survey when estimating inflation expectations. 
Jointly, these assumptions impact the decomposition of short-, medium- and longer-term 
euro area inflation-linked swap (ILS) rates into expectations and inflation risk premia. The 
baseline dataset of ILS rates used in the estimation spans the period going from June 2005 
to December 2023. The question of whether there is evidence of a decrease in the volatility 
of the inflation trend with the ECB’s establishment in 1998 is analysed with a longer dataset 
of backcasted ILS rates going back to 1992. 

Overall, results show that the estimated long-term measure of inflation expectations has 
hardly ever been de-anchored in the euro area since 2005. Estimates go down to close to 
1.80% in 2016 and reach again a similar trough during COVID-19. Expectations components 
of short-term ILS rates, such as the one-year rate, are not much affected by π�

∗, whereas those 
of longer-term (forward) rates are, including the one-year forward rate four years ahead (1y4y 
ILS rate) and the five-year forward rate five years ahead (5y5y). At these two horizons, 
inflation expectations have remained in line with the ECB objective. However, tentative signs 
of de-anchoring appear in the inflation expectations component of the one-year forward ILS 
rate two years ahead (1y2y), a relevant horizon as it broadly corresponds to the horizon of 
the Eurosystem/ECB staff projections. 

Summing up, this paper addresses the challenge of reliably estimating medium-term inflation 
expectations, which is central for the determination of (optimal) monetary policy. With 
inflation expectations broadly well anchored in the medium term, i.e. with a credible 
medium-term inflation objective, monetary policy does not need to be particularly restrictive 
in order to bring inflation back to target. A soft landing of the economy can therefore be 
envisaged. But if medium-term inflation expectations were to de-anchor, monetary policy 
might have to be significantly more restrictive to bring inflation expectations back in line 
with the objective, which could happen at the expense of an economic recession. 
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Figure: Estimated 𝛑𝒕
∗, inflation-linked swap (ILS) and surveys 

 

(Dés-)ancrage de l’inflation dans la zone 
euro 

RÉSUMÉ 

Cet article mesure le degré de désancrage potentiel des anticipations d'inflation dans la 
zone euro par rapport à l'objectif d'inflation de la Banque centrale européenne (BCE). Un 
modèle de structure par terme des taux, faisant l’hypothèse d’absence d’opportunité 
d’arbitrage, et introduisant une mesure, variable dans le temps,  des anticipations d’inflation 

à long terme, π�
∗, est appliqué aux taux de swaps indexés sur l'inflation (ILS), tout en tenant 

compte des prévisions d'inflation basées sur les enquêtes. Les estimations de π�
∗ sont 

proches de 2% depuis le milieu des années 2000, indiquant que les anticipations d'inflation 
à long terme sont globalement restées bien ancrées à l'objectif d'inflation de la BCE. 
Comme cet objectif est cependant lié au "moyen terme", les composantes des anticipations 
de divers taux forward ILS sont extraites : elles semblent avoir été globalement ancrées, 
avec de faibles signes de désancrage jusqu'à l'horizon de deux ans. En utilisant des taux 

ILS rétropolés, les estimations de π�
∗ sont bien supérieures à 2% au début des années 1990, 

mais convergent vers des niveaux inférieurs à 2% à la fin de la décennie lorsque la BCE a 
été établie. 

 

Mots-clés : taux de swaps d'inflation, enquêtes, absence d'arbitrage, point final mouvant, 
anticipations d'inflation. 
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1 Introduction

"The firm anchoring of inflation expectations is critical under any circumstances,

as it ensures that temporary movements in inflation do not feed into wages and prices

and hence become permanent."

Mario Draghi, 21 November 2014

The anchoring of inflation expectations is fundamental to ensure price stability, and macroe-

conomic stability more in general, as theorised and shown by history. In the authoritative new

Keynesian framework, inflation expectations affect the real economy through at least two chan-

nels: inflation expectations impact real interest rates (Fischer equation) and, to the extent that

prices are sticky, firms form prices in a forward-looking way, implying that inflation expectations

have a direct influence on current inflation (new Keynesian Phillips curve). Looking at history,

the US experience of the 1970s-1980s is a prime example reminding that bringing inflation expec-

tations down can imply significant monetary policy tightening, possibly at the cost of economic

recessions. Since then, it is well accepted that a central bank can engineer a soft landing of

the economy only if it is credible about its inflation objective, i.e. inflation expectations are

anchored to the central bank’s target. In the shorter history of the euro area, the experience

of the 2010s, with inflation remaining persistently below the ECB’s target, prompted increased

attention to inflation expectations (hence the quote above by Mario Draghi). More recently, the

post-pandemic recovery triggered renewed discussions on inflation expectations in a context of

inflation rates last seen in the 1970s.

As a result of historical lessons, and in line with theory, inflation-targeting central banks

monitor inflation expectations closely, in particular medium-term inflation expectations as they

are a direct measure of the credibility of their monetary policy. In the euro area, the ECB used

the discretion it enjoys to adjust the quantitative definition of its primary objective of price

stability: inflation "below 2%" as of October 1998; "below, but close to 2%" as of May 2003, and

"2%" as of July 2021, but the definition was always accompanied by the specification that the

objective referred to the "medium term". This specification reflects the inevitability of short-

term deviations of inflation from the target and the uncertainty in the transmission of monetary

policy to the economy. It also takes into account that the appropriate monetary policy response



to a deviation of inflation from the target is context-specific.

The main aim of this article is to provide a model-based aggregate of several measures of

medium-term inflation expectations. Feeding into the Governing Council’s deliberations on the

2021 ECB strategy review, ECB (2021) highlighted "the need for a comprehensive framework for

assessing (un)anchoring". One practical issue in monitoring medium-term inflation expectations

is indeed that they can be measured in (many) different ways. Market-based measures might refer

to inflation-linked swap (ILS) rates, break-even inflation rates, or fixings (short-term inflation

swaps attached to specific dates). Expectations can also be measured via surveys sounding out

professional forecasters, market or economic analysts, consumers or firms. While much work

remains to be done, this article constitutes a first answer to ECB (2021) by providing a model

encompassing both market-based and survey-based measures.

More precisely, the model estimates a time-varying measure of long-term inflation expec-

tations, π∗
t ("π-star"), and estimates the inflation expectations components of ILS rates, while

taking into account the ECB’s survey of professional forecasters and the Consensus Economics

survey. The expectations components entailed in different (forward) ILS rates speak to differ-

ent views on what the "medium term" orientation of the ECB’s inflation objective means, be

it two, four or ten years ahead. The model relates ILS rates across maturities by no-arbitrage

restrictions.

Overall, results show that the estimated long-term measure of inflation expectations has

hardly ever been de-anchored in the euro area since 2005 (start of ILS data). Estimates go down

to close to 1.80% in 2016 and reach again a similar trough during COVID-19. Expectations

components of short-term ILS rates, such as the one-year rate, are not much affected by π∗
t ,

whereas those of longer-term (forward) rates are, including for the one-year forward rate four

years ahead (1y4y ILS rate) and the five-year forward rate five years ahead (5y5y). At these two

horizons, inflation expectations have always remained in line with the ECB objective. However,

tentative signs of de-anchoring appear in the expectations component of the one-year forward

ILS rate two years ahead (1y2y), a relevant horizon as it broadly corresponds to the horizon of

the Eurosystem/ECB staff projections.

This article can be related to two strands of the literature: one on inflation anchoring/trends

in the euro area; and the other on term structure models. The literature on inflation anchor-

ing/trends looks at a range of data and resorts not only to a concept of anchoring in levels (e.g.

close to 2% or not), but also in changes (responsiveness of inflation expectations to macroe-



conomic news or shocks), and in distributions (e.g. distributions of individuals responses in

surveys or option-implied densities). It highlights various levels of concerns depending on the

period analysed. Beechey et al. (2011) compare the evolution of long-run inflation expectations

in the euro area and the United States, using evidence from financial markets and surveys of

professional forecasters. They find that long-run inflation expectations are reasonably well an-

chored in both economies and that both sources of information suggests firmer anchoring in

the euro area than in the United States (data from the 2000s). Similarly, Hördahl and Tristani

(2014) find that, after correcting for liquidity and inflation risk premia, long-term inflation ex-

pectations extracted from French and US break-even inflation rates have remained remarkably

stable at the peak of the financial crisis and throughout the Great Recession (data up to 2013).

A few years later, Łyziak and Paloviita (2017) analyse the anchoring of inflation expectations of

professional forecasters and consumers in the euro area to find that longer-term inflation expec-

tations have become somewhat more sensitive to shorter-term ones and to actual inflation in the

2010s, suggesting some signs of de-anchoring. In line with these signs, Grishchenko et al. (2019)

propose a measure of the anchoring of inflation expectations based on surveys that accounts

for inflation uncertainty, and obtain results suggesting that, following the Great Recession, in-

flation anchoring improved in the United States, while mild de-anchoring occurred in the euro

area. In the same vein, García and Werner (2021) find that the anchoring of euro area infla-

tion expectations has weakened since 2013, and Corsello et al. (2021) conclude that long-term

inflation expectations have de-anchored from the ECB’s inflation aim as, among other things,

the long-term expectations reported in the ECB’s survey of professional forecasters have not

regained the levels that prevailed before the 2013-14 disinflation. Brand et al. (2021) develop a

semi-structural macroeconomic model with arbitrage-free yield-curve dynamics to estimate π∗
t ,

inter alia, which they find to be time-varying but overall relatively stable around 2% in the 2000s

and 2010s.

Two recent papers take a similar approach to the present one to model euro area inflation

expectations. Cecchetti et al. (2022) introduce a model that features time-varying long-term

inflation with market-based risk-adjusted measures of expected inflation anchored to survey-

based inflation forecasts (the ECB’s survey of professional forecasters). Compared to the model

presented below, their model features time-varying inflation volatility, is estimated based on

options prices, and the identification of factors is carried out differently. Results also differ:

they find a more volatile medium-term risk-adjusted expected inflation, falling to 0.8% in 2016



and being below 1% from mid-2019 to early 2021. In addition, Boeckx et al. (2024) develop a

macro-finance model providing estimates of π∗
t that come close to those reported below. While

they go further into the analysis of ILS rates, e.g. by carrying out structural decompositions,

the present paper looks deeper into the implications of modelling choices for estimates of π∗
t and

expectations components.

Regarding the literature on term structure models, the main challenge is to introduce a

so-called shifting endpoint so that inflation expectations do not always converge to a constant

long-run mean. Early work in this respect can be found in Kozicki and Tinsley (2001) and

Dewachter and Lyrio (2006) who show the importance of long-run inflation expectations for

(long-run) bond yields. Building on this work, Dewachter and Iania (2011) propose a macro-

finance model of the US economy with shifting endpoints. However, the modelling approach of

Bauer and Rudebusch (2020) is the one pursued below as it builds on the canonical Gaussian

dynamic term structure model of Joslin et al. (2011) in which the pricing factors are observable

portfolios of yields (ILS rates in our case), greatly facilitating model estimation. As shown

in Camba-Méndez and Werner (2017), this canonical model can also be applied to ILS rates

(see also Burban et al. 2022). Bauer and Rudebusch (2020) model the shifting endpoint as an

unspanned factor, as in Joslin et al. (2014). Besides, the model presented below relates to survey

forecasts that have been shown to bring useful additional information to term structure models

(Kim and Orphanides, 2012).

The article is organised as follows. Section 2 describes the ILS and survey data. Section 3

establishes stylised facts that are then used to guide modelling choices described in Section 4.

Section 5 presents the main results, i.e. estimates of π∗
t and expectations components, while

Section 6 breaks down these results along the building blocks of the model. Section 7 provides

robustness tests. Section 8 concludes.

2 Data

This section introduces the market-based measures of inflation compensation and survey-based

forecasts of inflation used to estimate the model. Unlike break-even inflation rates derived from

inflation-linked and nominal sovereign bonds issued by specific euro area member states, ILS

contracts refer to the euro area as a whole and are considered to be less prone to liquidity

distortions (ECB, 2021). Compared to ILS rates, survey-based forecasts do not entail inflation



risk premia (allowing to consider them representative of "genuine" inflation expectations), but

are observed less frequently, refer to a relatively small group of respondents and might suffer

from other issues implying a misrepresentation of expectations. We focus on forecasts collected

from Consensus Economics and the ECB’s survey of professional forecasters.

2.1 Inflation-linked swap rates

ILS contracts exchange a fixed rate against a to-be-realised (floating) inflation rate, with both

rates applied to a notional amount. Only one (net) payment is made at maturity, implying that

ILS rates are zero-coupon rates. Standard no-arbitrage assumptions imply that the discounted

expected pay-off received from the fixed-rate leg is equal to the discounted expected pay-off

received from the floating-rate leg (so that the price of entering the swap is zero). Formally,

π̃t,M = M

√√√√EQ
t [It + M years − 3 months]

It − 3 months
− 1, (1)

where π̃t,M is the annualised and discretely compounded end-of-month ILS rate of maturity M

years observed at time (month) t, It is the reference price index, It+M years denotes (with some-

what loose notations) the reference price index in M years, and EQ
t [·] denotes the expectations

operator under the risk-neutral probability measure Q conditional on the information available

up to time t. As per market convention, the reference price index is the euro area harmonised

index of consumer prices excluding tobacco and it is lagged by three months (so that it is al-

ways observed when entering ILS contracts).1 ILS rates π̃t,M are provided by the London Stock

Exchange Group (LSEG) for maturities between one and ten years.2

In order to obtain forward-looking ILS rates, observed rates are adjusted for the indexa-

tion lag. In practice, this can be done by interpolating EQ
t [It] (which is not observed at time

t because of publication lags) from the observed It − 3 months and EQ
t [It + 1 year − 3 months] im-

plied by the 1y ILS rate (Equation 1). Further, EQ
t [It + M years] can be approximated from the

implied EQ
t [It + M years − 3 months] and EQ

t

[
It + (M+1) years − 3 months

]
, and so on and so forth for

EQ
t

[
It + (M+2) years

]
,..., EQ

t

[
It + (M+10) years

]
. This interpolation is done by log-linearisation on

1The role played by tobacco in the dynamics of the harmonised index of consumer prices is marginal, so that
the index excluding tobacco is virtually identical to the overall index.

2The mnemonics of the ILS data downloaded from LSEG are as follows: EUHCPT?Y_ICAP, where "?" must
be replaced by the maturity of the rate (1, 2, 3, ...). End-of-month bid and ask annualised quotes are averaged
to obtain time series of midpoint rates.



top of which a seasonal inflation pattern is added (the average pattern observed over the previous

five years), following Camba-Méndez and Werner (2017, see Appendix A.1).

Computing ILS rates as continuously-compounded rates gives the following representation:

πt,M = 1
M

ln

(
EQ

t [It + M years]
EQ

t [It]

)
, (2)

where πt,M is the continuously-compounded and indexation-lag-adjusted counterpart of π̃t,M .

The left-side panel of Figure 1 displays the 1-year to 10-year continuously-compounded zero-

coupon ILS rates adjusted for the indexation lag. The data provided by LSEG spans the period

going from June 2005 to December 2023 (data to the right of the vertical dotted line in the

figure), which constitutes the main sample used for the core analysis of this article. As of 2005,

ILS rates are close to 2% but short-term rates drop significantly in late 2008 at the height of the

global financial crisis (failure of Lehman Brothers). While short-term ILS rates had returned to

close to 2% by the end of 2010, the cross-section of ILS rates then gradually declined to levels

that would arguably be incompatible with the ECB’s inflation target of, at the time, "below,

but close to 2% over the medium term". For instance, the 5y5y ILS rate stood at about 1.5%

by mid-2016. ILS rates recovered somewhat by mid-2018 but then slid again to low levels until

the trough reached at the end of March 2020 in the midst of the COVID-19 crisis. ILS rates

increased significantly over the next two years, with short-term ones reaching all-time highs in

August 2022 before stabilizing to around 2.1% at the end of the sample.

A longer dataset of market-based inflation measures uses backcasted ILS rates from Burban

and Schupp (2023) going back to 1992. Their backcasting procedure exploits the correlation

between ILS rates and various economic variables.3 The longer backcasted time series allow to

estimate more precisely, in principle, equilibrium quantities such as the long-term mean of ILS

rates and to cover various policy regimes. Throughout the 1990s, ILS rates follow a downward

path reflecting the trend of headline inflation across countries that would later be part of the

euro area. ILS rates stabilised at levels close to 2% by the end of the decade. Acknowledging the

possibility of inflation risk premia, these levels are compatible with the initial inflation objective

of "below 2%" of the ECB.
3To ensure consistency along the cross-section, the 1-year, 5-year and 10-year ILS rates are backcasted and

other maturity-specific ILS rates are interpolated.



Figure 1: ILS rates and inflation survey forecasts. ILS rates are continuously compounded and adjusted
for the indexation lag as in Camba-Méndez and Werner (2017), and backcasted before 2005 as in Burban and
Schupp (2023) as highlighted by the dotted vertical line. The range of survey forecasts comprises forecasts from
Consensus Economics (CE) and the ECB’s SPF. "Long-term SPF forecasts" refer to average point forecasts for
the annual inflation rate in the fourth or the fifth calendar year. "Long-term CE forecasts" refer to average point
forecasts for the average annual inflation in 6 to 10 years time.

2.2 Inflation survey forecasts

We consider inflation survey forecasts from Consensus Economics (CE) and the ECB’s Survey

of Professional Forecasters (SPF). CE provides forecasts of the annual inflation rate for several

calendar years, so-called "fixed-event" forecasts. Forecasts with horizons starting at the calendar

year after next year and up to the fifth calendar year out are considered, amounting to four

forecast horizons. Very short-term inflation forecasts (e.g. for the current and next calendar

years) are discarded, so as to compare survey forecasts to purely model-based forecasts (avoiding

keeping track of past real-time HICP realisations) and because these very short-term forecasts

are less relevant to estimate the long-term level of inflation expectations. Besides, long-term

forecasts for the average annual inflation rate in six to ten years time are also considered. These

CE forecasts for the euro area as a whole are available since 2003, on a semiannual basis until

2014 and on a quarterly basis afterwards. Before 2003 and back until 1995, synthetic euro area

inflation expectations are constructed based on GDP-weighted forecasts for the five largest euro

area economies (Germany, France, Italy, Spain and the Netherlands), and for the three largest



economies back until 1992 (Germany, France, Italy).

From the ECB’s SPF, average point forecasts for the fixed horizons of one and two years

ahead are considered, as well as two fixed-event forecasts for the calendar year after the next

and for the "long-run". This long-run horizon represents the annual inflation rate in the fourth

calendar year for Q1 and Q2 vintages of the survey in a given year, and in the fifth calendar

year for the Q3 and Q4 vintages. SPF forecasts are available at quarterly frequency since 2000.

The right-side panel of Figure 1 shows the time series of inflation survey forecasts we consider.

Inflation survey forecasts show broadly similar dynamics to ILS rates, although fluctuations are

less pronounced. Survey forecasts follow a downward trend up to the end of the 1990s. In

subsequent years, long-term forecasts show only mild fluctuations at levels below but close to

2% until 2014, after which they gradually drop. Long-term survey forecasts start recovering as

of mid-2020 to reach levels slightly above 2% by the end of 2023. Short-term inflation survey

forecasts display more fluctuations than long-term forecasts, in particular during the COVID-19

pandemic when they reached historically high levels.

Overall, both ILS rates and survey-based forecasts provide tentative evidence of time vari-

ation in the long-run inflation expectations. Such variation can be modelled with a shifting

endpoint for inflation expectations. Before introducing the model, the next section presents

stylised facts of the euro area data.

3 Stylised facts on ILS rates and inflation trend proxies

Aiming to provide insights to guide the design of a dynamic term structure model in line with

the data, this section analyses the statistical properties of ILS rates and of a range of observable

proxies for the long-term inflation anchor, π∗
t , commonly used in the literature. A π∗

t proxy

should reflect slow-moving dynamics of inflation expectations embedded in ILS contracts. ILS

rates and observed π∗
t proxies are found to be cointegrated and, although the evidence is less

clear-cut, π∗
t proxies appear to be unspanned by the cross-section of ILS rates.

3.1 Observed π∗
t proxies

The left-side panel of Figure 2 shows four observed π∗
t proxies based on survey forecasts and

past inflation realisations used to derive a trend, along with the 5y5y ILS rate. Surveys include

long-term forecasts from CE and the SPF. Since the long-term SPF horizon is either the fourth



or the fifth calendar year and the long-term CE horizon is six to ten years ahead, a third

survey-based observed π∗
t proxy is considered by averaging the two long-term forecasts with

the CE fifth calendar-year-ahead forecasts so as to entail all forecasts of at least five years

(approximately). As survey forecasts are not available on a monthly basis, missing data points

are linearly interpolated. Besides, an inflation trend is estimated following the Discounted

Moving Average (DMA) approach of Cieslak and Povala (2015), based on monthly core inflation

data (which is less volatile than headline inflation). The parametrization of the discounted

moving average approach is presented in more details in Appendix A.1.

Figure 2: Inflation trend proxies and cointegration residuals. On the left panel, "DMA" stands for
discounted moving average (Cieslak and Povala, 2015). The 5y5y ILS rate is observed as of June 2005 (right of
vertical dashed line) and backcasted to 1992 based on Burban and Schupp (2023). On the right panel, cointegration
residuals come from a regression of the 10y ILS rate on the observed π∗

t proxy taken as the average of long-term
SPF and CE forecasts and the CE fifth calendar year forecasts.

3.2 Cointegration and common trend in ILS rates

ILS rates and observed π∗
t proxies are found to be non-stationary as the null hypothesis of a unit

root fails to be rejected at conventional confidence levels by standard tests (unreported). Given

the broadly similar tendencies displayed, ILS rates and observed π∗
t proxies appear as likely

cointegrated. To illustrate this, the right-side panel of Figure 2 displays the residuals of the

regression of the 10y ILS rate on one of the observed π∗
t proxies (the average of long-term SPF

and CE forecasts and CE fifth calendar-year-ahead forecasts). The residuals remain relatively
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stable around zero, without any clear trend.

More formally, the results of the cointegration analysis for the 10y ILS rate are displayed in

Table 1, while results for the 2y and 5y ILS rates are reported in Appendix A.2. Three sample

periods are considered: (i) the main sample that spans the period going from 2005 to 2023; (ii)

a subsample covering the years 2005-2019, i.e. stopping right before the COVID-19 outbreak in

order to discard the volatility in short-term ILS rates observed during the pandemic; and (iii) an

extended sample from 1992 to 2023 using backcasted ILS rates. As shown in the upper panel of

the table, trend coefficient estimates are generally found to be (strongly significant and) greater

than 1, as in Bauer and Rudebusch (2020). The lower panel of the table reports the results of

cointegration tests. Augmented Dickey-Fuller and Phillips-Perron tests look at the stationarity

of the residuals, and largely reject the null hypothesis of a unit root. This result is broadly

supported by Johansen cointegration tests.

3.3 Spanning tests

If π∗
t is not fully explained by the term structure of ILS rates, then π∗

t is said to be unspanned

by ILS rates. Two types of tests are carried out to verify the spanning hypothesis: regressions

of observed π∗
t proxies on principal components of ILS rates; and regressions of excess returns

on principal components and observed π∗
t proxies.

Following Joslin et al. (2014), observed π∗
t proxies are regressed on the first three principal

components of ILS rates (which explain 99.9% of the total variation in ILS rates): coefficients of

determination (R2) of less than 100% would suggest that π∗
t is unspanned by ILS rates. Table 2

shows that R2 are indeed generally found to be smaller than 100% across alternative observed

π∗
t proxies and samples. Focusing on the main sample (2005-2023), for instance, the range of

R2 goes from 31 to 77%.

(1) (2) (3) (4)
Avg. surveys CE SPF DMA

Main sample, 2005-2023 62% 31% 77% 68%
Subsample, 2005-2019 49% 20% 72% 83%
Extended sample, 1992-2023 60% 53% 81%

Table 2: Spanning tests as in Joslin et al. (2014). The table reports adjusted R2 from regressions of observed
π∗

t proxies on the first three principal components of ILS rates. The data are observed at monthly frequency.
"Avg. surveys" refers to the average of long-term SPF and CE forecasts and the CE fifth calendar year forecasts.



As an additional, and probably more reliable test, observed π∗
t proxies are added as regressor

to the first three principal components of ILS rates in regressions of excess returns, following

Bauer and Hamilton (2018) and Bauer and Rudebusch (2017, 2020). Significant coefficients for

observed π∗
t proxies would indicate that π∗

t helps to predict excess returns on top of the principal

components, and that it is unspanned by ILS rates. The focus is on quarterly (overlapping)

excess returns, as these returns suffer less from overlapping issues than annual returns, and as

they show more pronounced links with the macroeconomy than monthly excess returns. Realised

quarterly excess returns are computed as in Boeckx et al. (2024).4 The reverse regression

approach of Wei and Wright (2013) is used, as in Cieslak and Povala (2015), in order to deal

with the issue of overlapping excess returns.

Table 3 reports regressions estimates for excess returns averaged across maturities. Overall,

results indicate that observed π∗
t proxies help to predict excess returns. Small-sample (one-sided)

p-values computed as in Bauer and Hamilton (2018) are more often than not close to or below the

10% significance threshold. In particular, the coefficient of the observed π∗
t proxy is significant

over the main sample when using an average across survey forecasts or only the long-term SPF

forecasts. Besides, R2 coefficients noticeably increase when an observed π∗
t proxy is added to

the regression. Results for annual and monthly excess returns, reported in Appendix A.3, show

broadly similar results although evidence in favour of an unspanned π∗
t is somewhat weaker.

Besides, regressions of excess returns for maturity-specific ILS rates show that the coefficient of

observed π∗
t proxies tend to be more significant for ILS rates of longer maturities (unreported).

4Specifically, realised quarterly excess returns are computed as follows: rxt+3,m = (m×4−1)
4 πt+3,m−3 −mπt,m −

It+3
It

, where πt,m is the continuously-compounded ILS rate of maturity m months observed in month t adjusted
for the indexation lag and It+3

It
represents the realised inflation over the quarter. In the first term on the right

side, πt+3,m−3 is approximated by πt+3,m.



(1) (2) (3) (4) (5)
ILS rates only Avg. surveys CE SPF DMA

Main sample, 2005-2023
Constant -0.003* 0.013 0.006 0.013 -0.003

(0.002) (0.009) (0.008) (0.009) (0.002)
P C1 0.009 0.041* 0.018 0.062** 0.008

(0.017) (0.023) (0.017) (0.029) (0.039)
P C2 -0.156** -0.180** -0.164** -0.183*** -0.154**

(0.065) (0.071) (0.067) (0.070) (0.077)
P C3 -0.009 0.159 0.075 0.221 -0.012

(0.312) (0.304) (0.327) (0.280) (0.299)
π∗ proxy -0.932* -0.493 -1.044* 0.008

(0.525) (0.417) (0.536) (0.252)
[0.098] [0.189] [0.058] [0.477]

R2 3.98 6.09 4.37 6.70 3.53

Subsample, 2005-2019
Constant -0.002 0.014 0.009 0.012 0.001

(0.001) (0.010) (0.009) (0.011) (0.002)
P C1 0.032 0.057** 0.040 0.065** 0.163***

(0.025) (0.027) (0.024) (0.029) (0.043)
P C2 -0.056 -0.097 -0.076 -0.105 -0.350***

(0.075) (0.079) (0.078) (0.078) (0.095)
P C3 0.049 0.260 0.211 0.221 0.348

(0.380) (0.404) (0.425) (0.421) (0.311)
π∗ proxy -0.949* -0.639 -0.897 -1.002***

(0.565) (0.496) (0.645) (0.227)
[0.112] [0.172] [0.137] [0.004]

R2 1.65 4.27 3.14 2.75 16.04

Extended sample, 1991-2023
Constant -0.002 -0.000 -0.000 -0.002*

(0.001) (0.001) (0.002) (0.001)
P C1 0.022*** 0.036*** 0.032** 0.039*

(0.008) (0.014) (0.013) (0.021)
P C2 -0.106** -0.121*** -0.118*** -0.138***

(0.041) (0.044) (0.044) (0.045)
P C3 -0.154 -0.161 -0.161 -0.147

(0.288) (0.291) (0.292) (0.287)
π∗ proxy -0.122 -0.096 -0.052

(0.076) (0.072) (0.054)
[0.135] [0.187] [0.222]

R2 6.52 7.26 6.95 6.86

*** p < 0.01, ** p < 0.05, * p < 0.1

Table 3: Spanning tests based on one-period realised quarterly excess returns regressions. Regressions of
realised quarterly excess returns averaged across 2 to 10-year maturities. The three first principal components
describing the term structure of the ILS rates are used as predictors. For each maturity, the ILS-only specification
(column 1) is compared to a specification with an observed π∗

t proxy (columns 2 to 5). Regression coefficients are
displayed along with Newey-West standard errors (four lags) in parentheses (with significance levels highlighted
with stars), and small-sample (one-sided) p-values for the observed π∗

t proxy obtained with the bootstrap method
of Bauer and Hamilton (2018) in brackets. The data are observed at monthly frequency.



4 Model

The model consists of three main building blocks. The first block is the affine term structure

model of Joslin et al. (2011). A time-varying endpoint is added to the model following Bauer and

Rudebusch (2020), which makes the second block. In that model, π∗
t is cointegrated with and

unspanned by ILS rates, in line with the empirical evidence presented in the previous section.

The third block consists in adding survey forecasts as in Kim and Orphanides (2012), i.e. by

equalling these forecasts to model-implied expectations components up to an error term.

The model of Joslin et al. (2011) (first block) is summarised for convenience and completeness

in Appendix B. This section proceeds with the introduction of a shifting endpoint and survey

forecasts in the model.

4.1 A term structure model with a shifting endpoint

While the model of Joslin et al. (2011) features a stationary vector autoregressive (VAR) model

for the dynamics of the pricing factors of ILS rates under the physical probability measure P,

Bauer and Rudebusch (2020) introduce non-stationarity as follows:

Pt = P̄ + γπ∗
t + P̃t, π∗

t = π∗
t−1 + ηt, P̃t = ΦP̃t−1 + ϵ̃t,P̃ , (3)

where Pt is an N ×1 vector of unobserved latent factors that come close to principal components

once rotated as in Joslin et al. (2011) - henceforth, the "principal components" -, P̄ is an intercept

vector, γ is a vector of loadings of the principal components on the trend π∗
t , and P̃t represents

the cyclical parts of the principal components. The trend π∗
t is assumed to follow a random

walk with innovations ηt ∼ i.i.d. N(0, σ2
η). The cyclical components, P̃t, follow a VAR model

with one lag and no intercept (so that these cyclical components have a model-implied mean of

zero) and innovations ϵ̃t,P̃ ∼ i.i.d. N(0, Ω̃).

The dynamics of the principal components under the risk-neutral measure Q remain sta-

tionary as in Joslin et al. (2011). Specifically, these dynamics follow a VAR model with one

lag.

To close the model, the short-term (one-month) ILS rate is assumed to be affine in the

principal components:

πt = ρ0,P + ρ1,PPt. (4)



Under the assumption of stationarity of P̃t, i.e. given that the eigenvalues of Φ are all within

the unit circle, the (time-varying) long-run mean of the principal components can be computed

as:

P∗
t ≡ lim

h→∞
EP

t [Pt+h] = P̄ + γπ∗
t . (5)

This equation can be inserted in Equation 4 to derive two normalisation conditions in order

to identify π∗
t as the long-run mean of the short-term ILS rate πt, namely ρ0,P + ρ1,P P̄ = 0 and

ρ1,P · γ = 1.

Equations 3 can be recast into a VAR by defining Zt = (π∗
t , Pt)′:

Zt = µZ + ΦZZt−1 + vt, vt ∼ i.i.d. N(0, ΩZ), (6)

with µZ , ΦZ and ΩZ being functions of P̄, γ and ση as shown in Appendix C.

Given the above, it can be shown that ILS rates are affine functions of the principal compo-

nents and that π∗
t is unspanned by ILS rates:

Πt = AP +


0
... BP

0

Zt + µZ
t , (7)

where Πt is a J ×1 vector of ILS rates of different maturities (J > N), and µZ
t ∼ i.i.d. N(0, IJ ⊗

σ2).

The model is estimated by maximising the likelihood of the pricing Equation 7, where Zt

is obtained via the Kalman filter. The filter is initialised so that the first observations of the

principal components of observed ILS rates are matched, and with a π∗
t of 1.9% for the sample

starting in 2005 (and 3.2% for the sample with backcasted ILS rates starting in 1992), in line

with long-term survey forecasts. To start the maximum likelihood algorithm, starting values for

parameters determining the cross-section of the term structure are taken from the estimation of

the model without shifting endpoint, and starting values for the dynamics of Zt (Equations 6)

are obtained by ordinary least squares taking the average of long-term survey forecasts and CE

fifth calendar year as proxy for π∗
t . The estimation is robust to considering different π∗

t proxies

to obtain starting values, as long as ση is fixed (the importance of ση is highlighted in section

6).



4.2 Accounting for inflation survey forecasts

The approach of Kim and Orphanides (2012) is followed in order to add survey forecasts to the

model. The goal is twofold: (1) add information to help the estimation of π∗
t , which seems war-

ranted given the relatively short time series of observed ILS rates; and (2) inform the estimation

of model-based expectations components. The inclusion of survey forecasts is also motivated by

the results of Bańbura et al.(2021a, 2021b) and Diercks et al. (2023) suggesting that the ECB’s

SPF provides good point forecast performance, that it improves inflation forecasts for a wide

range of time series models when taken into account, and that a combination of ILS rates and

survey forecasts can lead to better forecast accuracy.

In practice, the Kalman filter is enhanced with nine additional measurement equations (five

for the CE survey and four for the SPF) that equate the set of survey forecasts to the model-

implied average inflation forecasts under the physical probability measure P, while at the same

time allowing for measurement errors. These survey measurement errors can be seen as reflecting

the fact that models are subject to estimation and model uncertainty (imperfect model forecasts)

or that surveys refer to a relatively small group of respondents (imperfect survey measurement),

although they also accommodate the issue that aggregated (e.g. average) survey forecasts may

differ from expectations of the marginal investor who determines asset prices, and the possibility

that survey expectations suffer from misunderstandings or a misrepresentation of expectations

induced by wrong incentives (like a reluctance to deviate too much from the consensus view).

Survey forecasts are connected to model-implied inflation expectations by exploiting the fact

that both fixed-horizon and fixed-event inflation forecasts can be accurately approximated by

a weighted sum of monthly inflation rates of the price index over the forecast horizon (Patton

and Timmermann, 2011). For example, the SPF forecast for the H = fifth calendar year ahead

(SPF5y) represents approximately the weighted sum of 24 monthly growth rates of the price

index covering the fourth and fifth calendar years:

fπ
t,SP F5y

≈
23∑

k=0
ωkEP

t [πt+l+36+k], (8)

where weights ωk = 1 − |k − 11|/12, 0 ≤ k ≤ 23, and l represents the distance in number of

months between the month of the survey and the end of the same calendar year.

Given the affine structure of the model according to Equation (7), each of these additional



measurement equations can be written as:

fπ
t,H = AP

H,Z + BP
H,ZZt + υt,z, (9)

where fπ
t,H represents the average (across survey respondents) point inflation forecast for ei-

ther fixed-horizon or fixed-event forecasts for horizon H, and AP
H,Z and BP

H,Z are computed as

weighted loadings over the relevant time window spanning horizon H and are functions of µZ ,

ΦZ , ρ0,P , and ρ1,P . The set-up of the Kalman filter accounts for the low frequency of survey

forecasts (semiannually or quarterly) by having missing values in the additional measurement

equations.

The survey measurement errors are modelled as autocorrelated to account for the possibility

of momentum effects (i.e. the tendency of survey participants to keep their forecasts unchanged).

Specifically, each of the nine measurement errors is assumed to follow an autoregressive model

with one lag: υt,z = ρυυt−1,z +ϵt,υ, with ϵt,υ ∼ i.i.d. N(0, I9 ⊗σ2
f ), and ρυ and σf common across

survey measurement error equations. In practice, the Kalman filter entails nine additional state

equations (one for each of the survey measurement error term).

5 Main results

This section presents the main results, i.e. the results that come out of the model with all the

features just introduced. The model is estimated with N = 3 principal components, which are

the usual so-called level, slope, and curvature factors.5 The main results refer to the data sample

going from 2005 to 2023.

5.1 Estimated π∗
t

The estimated π∗
t - henceforth π̂∗

t - displays historical variation but overall suggests little sign

of de-anchoring in the history of the euro area, as shown in Figure 3. From 2005 to 2014,

π̂∗
t hovers in a narrow range going from 1.89% to 1.99%, hence remaining consistent with the

ECB objective of the time of an inflation rate below, but close to 2% over the medium term.

Fluctuations were limited during the global financial crisis, which is in line with the relatively

stable longer-term ILS rates and survey forecasts in spite of volatility in shorter-term gauges.
5As in Joslin et al. (2011), the rotated latent factors are found to be remarkably close to the principal compo-

nents, with only the third (curvature) principal component being marginally more pronounced.



As of 2014, π̂∗
t starts following a downward trend with a trough at 1.83% reached in August

2016, while at the same time the ECB resorted to unconventional monetary policy tools, such as

asset purchases, in addition to policy rate cuts to support inflation (expectations). Accordingly,

the level of π̂∗
t remaining in line with the ECB objective of the time could partly be due to

the supporting role played by accommodative monetary policy. At the end of 2016, π̂∗
t would

somewhat recover, and the ECB would soon reduce the monetary policy impulse. However, it

became gradually clearer in 2019 that measures of inflation expectations were tumbling again,

dragging π̂∗
t along, and triggering renewed unconventional measures. A new trough was reached

in the first quarter of 2020 in the wake of the COVID-19 outbreak in Europe, with π̂∗
t at 1.80%.

But the prompt reaction of the ECB to boost unconventional measures helped to stabilise euro

area economies. Eventually, π̂∗
t increased back to levels close to 2%, which became the new

medium-term inflation objective following the strategy review of the ECB completed in July

2021.

Figure 3: π̂∗
t and observed proxies.

Long-term inflation survey forecasts are broadly in line with π̂∗
t . While π∗

t refers in principle

to an infinite horizon, long-term SPF forecasts have a horizon of about five years and long-term

CE forecasts are an average of expected inflation over the six to ten-year horizon. Nevertheless,

these horizons seem sufficiently far into the future for survey respondents to consider that eco-

nomic shocks will mostly have faded away by that time, implying that their inflation forecasts

should be close to the inflation equilibrium level they estimate (and close to the ECB objective



if inflation expectations are anchored).

The 5y5y ILS rate comoves strongly with π̂∗
t , with a correlation of 97%, although it is

substantially more volatile. According to the model, a spot ILS rate of maturity j, πt,j , follows

the dynamics πt,j = AP,j +BP,jPt = AP,j +BP,jP̄ +BP,jγπ∗
t +BP,jP̃t. Thus, the 5y5y ILS rate

loads on π∗
t with weight (2BP,10y −BP,5y)γ and on the cyclical parts of the principal component

with weights 2BP,10y − BP,5y. The first two entries of the vector 2BP,10y − BP,5y are positive

as the level factor loads more or less equally on ILS rates of different maturities and the slope

factor loads more positively on longer-term rates. Since these two entries are associated with

the first two entries of γ that tend to be large (as the level and slope factors load significantly on

π∗
t ), the 5y5y ILS rate dynamics are largely influenced by π∗

t , implying the high correlation. The

estimated γ is (16.4, 9.1, 2.2)’, with values indeed well above 1 as a result of the relatively stable

π̂∗
t (the small fluctuations in π̂∗

t must be multiplied to match the fluctuations of the principal

components). By contrast, the correlation between the 1y ILS rate and π̂∗
t is more limited, at

41%: the second entry in BP,1y is negative and multiplied by the large second entry of γ, which

reduces the overall loading BP,1y · γ on π̂∗
t .

The fact that the 5y5y ILS rate is highly correlated with π̂∗
t is consistent with the idea

that longer-term ILS rates depend more on structural forces, such as reflected in π∗
t , rather

than cyclical components. As shown in Figure 4, the cyclical component of the 5y5y ILS rate

shows only mild fluctuations. By contrast, the cyclical component becomes more prevalent for

shorter-term ILS rates and explains most of the variation in the 1y rate.



Figure 4: Trend and cyclical components in ILS rates.

The importance of π∗
t in the dynamics of maturity-specific ILS rates is given by the loading

BP,j · γ, which Figure 5 shows as a function of maturity j. The function starts at 1 for j = 1

month (i.e. the maturity of the implied short-term rate), following from the restriction ρ1,P ·γ = 1

imposed for identification purposes. As maturity j increases, the loadings of ILS rates on π∗
t

increase. The function is concave as the model imposes that loadings converge to zero as

the maturity increases (beyond the 10-year maturity) to infinity: stationarity under the risk-

neutral probability measure Q implies a constant short-term ILS rate in the long run. Empirical

counterparts to the model-implied loadings are given by the cointegration analysis regressing

ILS rates on an observed π̂∗
t proxy. Taking the average of SPF and CE survey forecasts for

at least five years ahead as observed proxy, the empirical loadings are found to be broadly in

line with the model-implied loadings of ILS rates of maturities of at least four years. There is

a pronounced discrepancy between empirical and model-implied loadings for shorter-term ILS



rates, which comes from the identification restriction ρ1,P · γ = 1. The shape of the BP,j · γ

function and correspondence to empirical estimates are similar to those in Bauer and Rudebusch

(2020).

Figure 5: ILS rates loadings on π∗
t . The empirical coefficients come from regressions of ILS rates on the

observed π∗
t proxy taken as the average of long-term SPF and CE forecasts and the CE fifth calendar year

forecasts. The model parameter ση is calibrated in line with this observed π∗
t proxy, i.e. a standard deviation of

50 basis points per century.

5.2 Expectations components and inflation risk premia

While π∗
t is associated to an infinite horizon, the ECB’s price stability objective refers to the

"medium term". There is no consensus on what horizon is to be deemed best representative

of the medium term, but there are several natural candidates. Financial market analysts often

focus on the 5y5y horizon (which corresponds broadly to the longest horizon in the CE survey),

probably as the horizon is distant enough in the future so as to consider that most of the effects

of small temporary shocks will have faded away five years on, and also as it refers to a relatively

liquid market segment. On the latter, liquidity on the ILS market is highest exactly for the 5-

year and 10-year maturities (Boneva et al., 2019). As an alternative, the ECB’s SPF probes into

inflation expectations up to the four or fifth calendar year horizon, and refers to these forecasts

as "long-term" inflation expectations. Finally, the Eurosystem/ECB staff regularly produces

macroeconomic projections up to the second or third calendar year horizon. These projections

are a major input to help the ECB’s Governing Council to form a view on the inflation outlook.

Accordingly, the 5y5y, 1y4y and 1y2y ILS rates are considered relevant to refer to some



concept of "medium term". The 1y4y rate is the closest market-based counterpart of the long-

term SPF forecast, and the 1y2y rate is the closest counterpart to the end-of-horizon staff

projections. The 1y rate is kept in figures below as reference.

In order to assess the anchoring of inflation expectations at these horizons, one must extract

the inflation expectations components embedded in ILS rates, i.e. strip ILS rates of inflation

risk premia. The model presented above is well suited to perform such a decomposition in a

consistent way for the cross-section of ILS rates. The expectations component of an ILS rate of

maturity j years, πe
t,j , is defined as the average expected (P dynamics) short-term ILS rate over

the next j years:

πe
t,j = 1

12j

12j∑
h=1

EP
t [πt+h], (10)

and the inflation risk premia, πirp
t,j , is obtained by retrieving the expectations component from

the ILS rate, such that πirp
t,j = πt,j − πe

t,j .

Figure 6 shows that estimated expectations components tend to be relatively stable for

longer-term ILS rates. For instance, the expectations component of the 5y5y ILS rate has

always been close to 2%, with a minimum of 1.80% reached at the time of the COVID-19

outbreak. In fact, the expectations component of the 5y5y ILS rate shows similar dynamics to

π̂∗
t . This similarity comes from the relatively fast convergence of the short-term ILS rate to its

long-run mean, which is precisely π̂∗
t . As the 5y5y horizon is a quite distant one, forecasts of

the short-term rate essentially hover around π̂∗
t . The speed of convergence of forecasts depends

on the eigenvalues of Φ, i.e. the feedback matrix in the VAR for the cyclical parts of principal

components (Equations 3). As the highest eigenvalue of Φ is 0.95 (a number typically lower

than in models with a fixed endpoint since it refers only to the persistence in the cyclical parts

of principal components), the cyclical part in the forecasts of the short-term rate under the

P measure is close to zero at the 5y5y horizon (at the 5-year horizon, not much is left of the

persistence implied by the eigenvalue: 0.9560 = 0.046 and 0.95120 = 0.002). By contrast, the

expectations component of the 1y ILS rate has shown significant movements, ranging between

0.74% and 4.58% (0.9512 = 0.540).

The expectations components of the 1y4y and 1y2y ILS rates show somewhat more volatility

than that of the 5y5y rate (or π̂∗
t ), which suggests somewhat more pronounced de-anchoring risks

at these horizons. The expectations component of the 1y2y ILS rate, in particular, gets as low



Figure 6: Inflation expectations components and inflation risk premia.

as 1.60% during COVID-19 and 1.64% at the end of 2014. These relatively low values more

clearly stretch the interpretation of the objective of "below, but close to 2%", and support the

implementation of the APP and PEPP that shortly followed these tentative signs of de-anchored

medium-term inflation expectations.

Looking into the sign of the estimated inflation risk premia, these have either been positive or

negative, depending on the macroeconomic context. These premia followed a downward trend

across the curve over most of the sample period and turned negative in the years preceding

COVID-19. However, as the post-COVID-19 recovery took root in 2021 and gained momentum

in 2022, inflation risk premia increased to become positive again. The return of inflation risk

premia to positive values suggest that the macroeconomic environment is dominated by supply

(rather than demand) shocks: inflation tends to increase when financial asset payoffs (in real



terms) are highly valued, i.e. when real activity declines and the marginal utility of consumption

rises. Supply shocks emerged during the post-pandemic recovery from frozen global value chains,

creating supply bottlenecks, and were exacerbated by Russia’s war in Ukraine, which worsened

the supply of energy, with particularly acute consequences for Europe as a net energy importer.

Ongoing geopolitical tensions, global economic fragmentation risks, and the challenges posed by

the energy transition likely continue to support positive inflation risk premia.

6 Breaking down the main results

This section sheds lights on the marginal impacts of the three main building blocks of the

model: the standard model of Joslin et al. (2011) (with a fixed endpoint), the addition of a

shifting endpoint as in Bauer and Rudebusch (2020), and the addition of survey forecasts as in

Kim and Orphanides (2012).

One disadvantage of the model of Joslin et al. (2011, JSZ) is that it is not well suited to assess

whether or not longer-term inflation expectations are de-anchored. As the model features a fixed

endpoint (i.e. a constant π∗), forecasts of the short-term ILS rate converge at any point in time

to the same value. Empirically, this value might or might not be estimated to be aligned with

the ECB’s inflation objective, depending on the history of ILS rates. Over the sample 2005-2023,

the value of π∗ is estimated at 1.7%, which is quite distant from today’s ECB’s objective of 2%.

As a result of this relatively low fixed endpoint, the expectations component of the 5y5y ILS

rate hovers around 1.7%, as shown in Figure 7. The fixed endpoint could even be estimated at a

lower value, for instance if the model would be estimated on a sample ending before COVID-19.

In that case, the model would only see the downward trend of ILS rates and the quite low last

observations of these rates. Nevertheless, the JSZ model provides expectations components with

reasonable variations for the shorter-term ILS rates, as these components are less influenced by

the (fixed or shifting) endpoint. Alternatively, the fixed endpoint in the JSZ model could be

calibrated at 2% for consistency with the ECB’s objective (Burban et al., 2022), but the issue

remains that the model is not well suited to assess potential de-anchoring of long-term inflation

expectations.



Figure 7: Expectations components. "JSZ" refers to Joslin et al. (2011). "BR" refers to Bauer and Rudebusch
(2020).

Adding a shifting endpoint to the JSZ model, as in Bauer and Rudebusch (2020, BR), allows

in principle to discuss the potential de-anchoring of longer-term inflation expectations, but the

estimation of the model is confronted with an identification issue. In practice, it turns out to

be difficult to estimate π∗
t as the parameter ση (the standard error of the innovation term in

the random walk model of π∗
t ) is not well identified. Figure 8 shows that the average likelihood

function of the BR model without surveys is flat for values of ση corresponding to a range going

from 0 to 1% standard deviation per century for π∗
t .6 This identification issue is well-known

and usually tackled with a tight prior in Bayesian econometrics (Bauer and Rudebusch, 2020;
6The translation of ση to a value corresponding to the standard deviation per century for π∗

t is given by the
formula

√
(1200σ2

η).



Del Negro et al., 2017, 2019). As the equivalent of a tight prior is calibration in the frequentist

maximum likelihood approach, the yellow lines in Figure 7 are obtained by calibrating ση at a

value corresponding to a 50 basis point standard deviation per century, for illustrative purposes.

These 50 basis points correspond to the standard deviation of the observed π∗
t proxy taken as the

average across survey forecasts for a horizon of at least five years ahead. Following this choice,

the BR model shows more variation for the expectations components of longer-term ILS rates

than those derived from the JSZ model, as π∗
t is time-varying in the BR model. Yet, the JSZ

and BR models provide similar estimates of expectations components in short-term ILS rates.

Figure 8: Average log-likelihoods as a function of ση. Values of ση are expressed in basis point standard
deviation per century.

Adding surveys to the BR model offers two advantages: (1) it allows for a proper identification

of ση; and (2) it brings model-implied forecasts closer to survey forecasts. As shown by the

likelihood function of the BR model with surveys, a global optimum is well-identified in Figure

8 at a standard deviation for π̂∗
t of 50 basis points standard deviation per century. With this

optimum, yellow and magenta lines in Figure 7 can be compared directly as the only difference

between the two is the inclusion of surveys in the BR model. The main impact of the inclusion

of surveys is that the expectations components in the 1y4y and 5y5y ILS rates are estimated

to be higher and flatter. This is in line with survey forecasts remaining closer to 2% than ILS

rates throughout the sample period. As shown in Figure 9 (10), the fit of the CE (SPF) survey

forecasts by the BR model with surveys clearly improves on the model without surveys, and is



overall quite accurate: the standard deviation of the survey measurement errors is 9 basis points

across all survey forecasts.

Finally, an additional feature can be added to the model: the autocorrelation of survey

measurement errors. This autocorrelation could account, for instance, for a momentum effect in

survey respondents, i.e. the tendency to keep forecasts unchanged. As a further motivation, sur-

vey measurement errors of the BR model with surveys are found to be autocorrelated, prompting

the need to model this autocorrelation. The autoregressive parameter of survey measurement

errors is estimated to be quite high at 0.89. However, modelling this autocorrelation does not

impact much model estimates, which is in line with Kim and Orphanides (2012). Survey fore-

casts are still tightly fit, with only a slightly larger standard deviation of survey measurement

errors of 10 basis points, and estimates of π̂∗
t and expectations components are not materially

changed (Figure 7). The small differences come almost entirely from calibrating ση at 30 basis

points standard deviation per century in the BR model with surveys and autocorrelation. To be

sure, the likelihood function displayed in Figure 8 is almost flat for values of ση below 30 basis

points. Therefore, this value can be seen as a conservative choice, as it allows for more variation

in π̂∗
t , and hence greater probability of de-anchoring: even with a conservatively large ση, the

model does not suggest that medium- to long-term inflation expectations have been de-anchored

in the euro area.



Figure 9: Fit of Consensus Economics survey forecasts "JSZ" refers to Joslin et al. (2011). "BR" refers
to Bauer and Rudebusch (2020). The mean squared error of model i ∈ {1, 2, 3} is computed as: MSEi =
1
T

∑T

t=1(f i
t − f̂ i

t )2.



Figure 10: Fit of SPF forecasts. "JSZ" refers to Joslin et al. (2011). "BR" refers to Bauer and Rudebusch
(2020). The mean squared error of model i ∈ {1, 2, 3} is computed as: MSEi = 1

T

∑T

t=1(f i
t − f̂ i

t )2.

7 Robustness tests

This section presents two types of robustness tests. The first type regards the crucial parameter

ση that governs the volatility of π̂∗
t . That parameter is allowed to change during COVID-19 and

during the 1990s to allow for larger movements in π̂∗
t . The question asked is thus: is there a

regime shift during COVID-19 and/or during the 1990s? The second type of robustness tests is

a series of exclusion restrictions, in an attempt to reduce the number of model parameters.



7.1 Regime shifts in the volatility of π∗
t

There is no sign of regime shift during the COVID-19 period. Allowing the parameter ση to

increase as of February 2020 results in a lower likelihood than the model keeping ση constant

at 30 basis points standard deviation per century for π̂∗
t . It should be noted that the greater

volatility in ILS rates as of February 2020 is concentrated in shorter-term rates, i.e. the rates

that have less of a connection with π∗
t . Longer-term ILS rates, such as the 5y5y rate, did not

show substantially more volatility, although they did converge relatively smoothly to just above

2%.

Figure 11 nevertheless plots the π∗
t that is estimated by doubling ση as of February 2020

(i.e. going from 30 to 60 basis points standard deviation per century for π∗
t ). The estimated

π∗
t is close to the baseline π̂∗

t of the main results, but increases more at the end of the sample

to just reach 2%. While the latter seems desirable in the context of the ECB’s medium-term

objective, the model prefers the results with unchanged ση and a slightly lower π∗
t , probably

because the other model parameters are constant through the sample period and adjusting them

to accommodate a higher ση at the end of the sample causes a less good fit on the rest of the

sample. The adjustment in other model parameters also explains why the estimated π∗
t is slightly

different from the baseline π̂∗
t of the main results over the period 2005-2019.

In contrast to the lack of evidence in favour of a regime shift during COVID-19, there is

ample evidence of a regime shift over the period 1992-1998. A regime shift is allowed for before

October 1998, i.e. before the newly established ECB announced its inflation target of "below

2%". The regime shift is also allowed for as survey forecasts and backcasted ILS rates (including

longer-term ones) show substantially higher volatility during the 1990s. The optimum ση before

October 1998 is found at a value of 210 basis points standard deviation per century for π̂∗
t , or

seven times the optimum ση found for the main sample going from 2005 to 2023.

In spite of the clear evidence of a regime shift before October 1998, Figure 11 shows that

the estimated π∗
t remains remarkably close to the π̂∗

t of the main results over the period 2005-

2023. The main advantage of allowing for a regime shift in ση in the 1990s is to allow for π̂∗
t to

converge fast to levels in line with what would soon become the ECB’s objective. Allowing for a

fast convergence is indeed necessary with π∗
t initialised at 3.2% in the Kalman filter, as suggested

by the value of the long-term synthetic euro area CE surveys in January 1992. Starting from

such a high level, π̂∗
t cannot get to less than 2% by the end of 1998 if ση is not large.



Figure 11: Estimated π∗
t with regime shifts.

7.2 Parameter restriction tests

Various restrictions on parameters of the model are tested as in Christensen et al. (2010, 2011),

Christensen and Rudebusch (2012), and a series of subsequent papers.

Restricting Ω̃ to be a diagonal matrix is not supported by a likelihood ratio test (p-value <<

1%). That is, the cyclical parts of principal components are found to be conditionally correlated.

Nevertheless, this correlation is not significant from an economic point of view in the sense that

the fit of ILS rates does not suffer much from imposing Ω̃ to be diagonal. As shown in Table 4,

the average root mean squared ILS measurement error is 1.58 basis points with Ω̃ as full matrix,

and 1.63 basis points with Ω̃ diagonal. On this basis, the restriction of a diagonal Ω̃ could be

retained.

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y avg

Ω̃ full 1.15 3.38 1.43 1.30 1.77 1.77 1.27 0.68 1.06 2.02 1.58

Ω̃ diag 1.20 3.38 1.41 1.29 1.76 1.75 1.27 0.80 1.25 2.15 1.63

Table 4: ILS rates fitting errors. The table reports root mean squared fitting errors. "Ω̃ diag" refers to the
restriction imposing that Ω̃ is a diagonal matrix. "Ω̃ full" refers to a full Ω̃ matrix.

In addition, the various elements of Φ are tested (except the diagonal elements, i.e. the

coefficients on own lags). Likelihood ratio tests clearly reject any exclusion restriction. The

off-diagonal elements of Φ are tested one by one. First, all Φ matrices including only one zero



restriction are considered. As shown in Table 5 summarising the results, the most likely zero

restriction would be imposed on the coefficient of the level factor in the slope equation, i.e.

ϕ2,1 = 0, but this restriction is highly rejected by a likelihood ratio test, as well as by the Akaike

and Bayesian information criteria. Second, all the Φ matrices including two zero restrictions,

including ϕ2,1 = 0, are tested. The second most likely restriction would be imposed on the

coefficient of the slope factor in the curvature equation (ϕ3,2 = 0), but this restriction is also

highly rejected. Idem for a third potential restriction on the coefficient of the slope factor in

the level equation (ϕ1,2 = 0). The exclusion restrictions taken together (ϕ2,1 = ϕ3,2 = 0, and

ϕ2,1 = ϕ3,2 = ϕ1,2 = 0), are also highly rejected. These tests were run while imposing Ω̃ to be

a diagonal matrix, but exclusion restrictions in Φ are also highly rejected with Ω̃ being a full

matrix.

Restriction Log-llk p-value AIC BIC

Φ full 17213.45 - -34384.91 -34313.46

ϕ2,1 = 0 17202.92 0 -34365.84 -34297.79

ϕ2,1 = ϕ3,2 = 0 17188.51 0 -34339.03 -34274.38

ϕ2,1 = ϕ3,2 = ϕ1,2 = 0 17183.18 0.1% -34330.35 -34269.11

Table 5: Exclusion restriction tests. Likelihood ratio tests are carried out for each additional exclusion restric-
tion. ϕ refers to elements populating Φ with the first subscript referencing the line, and the second referencing
the column.

8 Conclusion

From a policy point of view, the model presented above - which follows Bauer and Rudebusch

(2020) for the modelling of a shifting inflation endpoint, π∗
t , and Kim and Orphanides (2012) for

the inclusion of survey forecasts complementing the information entailed in ILS rates - provides

evidence that long-term inflation expectations have been well-anchored with the ECB’s inflation

objective, as the estimated π∗
t has remained close to 2% since 2005. No evidence of regime shift

is found during the COVID-19 pandemic, but a model estimated on ILS rates backcasted to

1992 requires a larger ση (the standard error of innovations in the random walk model of π∗
t )

over the period 1992-1998, so that the estimated π∗
t converges to below 2% by the time of the

establishment of the ECB.

From a technical point of view, the model provides a framework that allows the analysis of

ILS rates in a way that is consistent with the sparser and more infrequent information provided

by surveys. The model extracts the expectations components of ILS rates taking into account



survey forecasts, while at the same time allowing for imperfections in survey measurements. As

a result, the model provides monthly estimates of not only π∗
t but also expectations components

for ILS rates of virtually any maturity. In that sense, the framework is a first step in answering

the call formulated in ECB (2021) on "the need for a comprehensive framework for assessing

(un)anchoring". Next steps probably involve the integration of more data into the model, for

instance related to consumer expectations, the dispersion of individual professional and consumer

forecasts, and past inflation realisations.

Future research could pursue various other avenues. The finding that the identification of

ση is solved when survey forecasts are taken into account could deserve more attention. There

is scope for a more thorough investigation of possible regime shifts, possibly involving changes

in more parameters than ση. Historical data (where regime shifts are more likely to be found)

might require to look at the data of specific euro area Member States. Beyond the euro area,

the model could be applied to various countries across the world. As ILS rates are observed

every day, daily estimates of π∗
t could be derived.



Appendix A Additional results from the preliminary analysis

A.1 Calibration of Cieslak and Povala (2015)’s discounted moving average

The approach detailed in the online appendix of Cieslak and Povala (2015) is followed to calibrate

the parameters driving the discounted moving average (DMA) of past realised core inflation.

The DMA is written as follow:

π̂∗
t = (1 − ν)

t−1∑
i=0

νiπcore
t−i , (A.1)

where πcore
t−i is the year-on-year core inflation observed in month t − i. The sum is truncated

at N = 120 months with a smoothing parameter, ν, of 0.975. The latter is determined by

minimizing the fitting errors of an autoregressive model of order one - AR(1) - in gap form

estimated using nonlinear least squares. The relation is the following :

HICP core
t+1

HICP core
t−11

− π̂∗
t (ν, N) = ϕ

(
HICP core

t

HICP core
t−12

− π̂∗
t (ν, N)

)
+ ϵt+1, (A.2)

where HICP core
t is the core harmonised index of euro area consumer prices. Fitting errors are

minimised by searching for parameter ν (keeping N fixed) that gives the most accurate core

inflation forecasts and the best fit to inflation surveys, considering the CE forecasts introduced

in Section 2. The left panel of Figure A.1 displays the root mean squared error (RMSE) for

different values of ν, given ϕ = 0.996. This value of ϕ is obtained by fitting an AR(1) process to

core HICP inflation from January 1970 to December 2023. As shown on the panel, the RMSE

is minimized for a value ν of 0.968. The right panel shows the results of a grid search over

parameters ν and ϕ. The minimum MSE is located at ν = 0.975 and ϕ = 0.918.
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Figure A.1: Core inflation mean squared errors for different gain parameters ν and ϕ. Note : The mean
squared error is computed as the average over CE survey forecasts at horizon j : MSEj = 1

Tj

∑Tj

t=tj
(ft+j − f̂ν

t+j)2.
On the left panel, the minimum is reached at ν = 0.968. On the right panel, the red lines point to the minimum
MSE reached at ν = 0.975 and ϕ = 0.918.



A.2 Cointegration analysis
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A.3 Spanning analysis

(1) (2) (3) (4) (5)
ILS rates only Avg. surveys CE SPF DMA

Main sample, 2005-2023
Constant -0.001 0.006* 0.002 0.007** -0.001

(0.001) (0.003) (0.004) (0.003) (0.001)
P C1 0.003 0.017 0.007 0.030** 0.001

(0.008) (0.011) (0.009) (0.014) (0.015)
P C2 -0.037 -0.047 -0.039 -0.050 -0.032

(0.034) (0.034) (0.034) (0.034) (0.032)
P C3 0.020 0.092 0.051 0.138 0.014

(0.165) (0.170) (0.180) (0.159) (0.167)
π∗ proxy -0.397* -0.178 -0.527** 0.017

(0.203) (0.197) (0.217) (0.078)
[0.072] [0.248] [0.018] [0.549]

R2 -0.69 0.41 -0.80 1.61 -1.13

Subsample, 2005-2019
Constant -0.000 0.004 0.002 0.003 0.001

(0.001) (0.004) (0.004) (0.004) (0.001)
P C1 0.011 0.018* 0.013 0.020* 0.049***

(0.010) (0.010) (0.010) (0.011) (0.017)
P C2 -0.017 -0.030 -0.021 -0.031 -0.103***

(0.039) (0.041) (0.041) (0.041) (0.037)
P C3 -0.060 0.005 -0.024 -0.008 0.024

(0.171) (0.181) (0.191) (0.184) (0.153)
π∗ proxy -0.287 -0.147 -0.244 -0.296***

(0.215) (0.203) (0.266) (0.089)
[0.161] [0.296] [0.209] [0.012]

R2 -0.92 -0.66 -1.20 -1.12 2.31

Extended sample, 1991-2023
Constant -0.001 -0.000 -0.000 -0.001

(0.000) (0.001) (0.001) (0.000)
P C1 0.007** 0.012** 0.011** 0.011

(0.003) (0.005) (0.005) (0.008)
P C2 -0.027 -0.032 -0.031 -0.034

(0.025) (0.025) (0.025) (0.025)
P C3 -0.016 -0.019 -0.019 -0.014

(0.156) (0.158) (0.158) (0.157)
π∗ proxy -0.043 -0.032 -0.012

(0.030) (0.028) (0.021)
[0.148] [0.231] [0.319]

R2 1.02 1.18 1.00 0.87

*** p < 0.01, ** p < 0.05, * p < 0.1

Table A.3: Spanning tests based on one-period realised monthly excess returns regressions. Regressions
of realised monthly excess returns averaged across 2 to 10-year maturities. The three first principal components
describing the term structure of the ILS rates are used as predictors. For each maturity, the ILS-only specification
(column 1) is compared to a specification with an observed π∗

t proxy (columns 2 to 5). Regression coefficients are
displayed along with Newey-West standard errors (four lags) in parentheses (with significance levels highlighted
with stars), and small-sample (one-sided) p-values for the observed π∗

t proxy obtained with the bootstrap method
of Bauer and Hamilton (2018) in brackets. The data are observed at monthly frequency.



(1) (2) (3) (4) (5)
ILS rates only Avg. surveys CE SPF DMA

Main sample, 2005-2023
Constant -0.013*** -0.039 -0.041* -0.039 -0.018**

(0.005) (0.028) (0.024) (0.033) (0.008)
P C1 0.049 -0.001 0.024 -0.031 -0.074

(0.041) (0.048) (0.036) (0.082) (0.113)
P C2 -0.559*** -0.519*** -0.536*** -0.514*** -0.205

(0.147) (0.138) (0.136) (0.140) (0.258)
P C3 0.789 0.469 0.489 0.352 0.387

(0.753) (0.783) (0.742) (0.866) (0.662)
π∗ proxy 1.547 1.550 1.709 1.261

(1.577) (1.186) (1.980) (1.092)
[0.743] [0.847] [0.671] [0.755]

R2 13.76 14.47 14.74 14.53 17.38

Subsample, 2005-2019
Constant -0.005* -0.005 -0.010 -0.016 0.001

(0.003) (0.016) (0.016) (0.019) (0.003)
P C1 0.068* 0.068 0.065 0.045 0.304***

(0.040) (0.047) (0.040) (0.054) (0.052)
P C2 -0.288* -0.288* -0.281* -0.258 -0.821***

(0.154) (0.162) (0.157) (0.168) (0.147)
P C3 0.076 0.075 0.007 -0.043 0.605

(0.572) (0.583) (0.576) (0.633) (0.495)
π∗ proxy 0.003 0.277 0.682 -1.786***

(0.921) (0.830) (1.162) (0.311)
[0.476] [0.606] [0.611] [0.001]

R2 6.81 6.22 6.38 6.56 25.12

Extended sample, 1991-2023
Constant -0.010** -0.007* -0.007* -0.011***

(0.004) (0.004) (0.004) (0.004)
P C1 0.086*** 0.111*** 0.106*** 0.140***

(0.024) (0.036) (0.035) (0.049)
P C2 -0.432*** -0.456*** -0.455*** -0.531***

(0.107) (0.112) (0.112) (0.110)
P C3 0.499 0.485 0.482 0.514

(0.687) (0.687) (0.689) (0.683)
π∗ proxy -0.214 -0.192 -0.162

(0.151) (0.150) (0.113)
[0.154] [0.184] [0.119]

R2 20.64 20.98 20.92 21.46

*** p < 0.01, ** p < 0.05, * p < 0.1

Table A.4: Spanning tests based on one-period realised annual excess returns regressions. Regressions
of realised annual excess returns averaged across 2 to 10-year maturities. The three first principal components
describing the term structure of the ILS rates are used as predictors. For each maturity, the ILS-only specification
(column 1) is compared to a specification with an observed π∗

t proxy (columns 2 to 5). Regression coefficients are
displayed along with Newey-West standard errors (four lags) in parentheses (with significance levels highlighted
with stars), and small-sample (one-sided) p-values for the observed π∗

t proxy obtained with the bootstrap method
of Bauer and Hamilton (2018) in brackets. The data are observed at monthly frequency.

Appendix B An affine term structure model with fixed end-

point

The specification of the model with a fixed endpoint follows Joslin et al. (2011). In this model,

the latent factors, X, follow a vector autoregressive model of order one under both the physical

and the risk-neutral probabilty measure, P and Q respectively, and the short-term inflation rate



is affine in the latent factors:

Xt = KP
0,X + KP

1,XXt−1 + ϵPt,X , (B.3)

Xt = KQ
0,X + KQ

1,XXt−1 + ϵQt,X , (B.4)

πt,1 = ρ0,X + ρ1,XXt, (B.5)

where t = 1, ..., T indexes time, Xt is a column vector of length N , and πt,1 is the (implicit)

short-term (one-month) ILS rate. Both ϵPt,X and ϵQt,X are column vectors that are independently

and identically distributed (i.i.d.) according to normal distributions with the same covariance

matrix ΩX , i.e. ϵPt,X , ϵQt,X ∼ i.i.d. N(0, ΩX).

In order to ensure identification of the factors while keeping maximum flexibility (Dai and

Singleton, 2000), KQ
1,X is diagonal (with entries assumed to be real, distinct and less than 1),

ρ1,X is a vector of ones and, following the most general specification in Joslin et al. (2011),

ρ0,X = 0 and KQ
0,X = (kQ

∞, 0, ..., 0)′.

Given the above, it can be shown that observed ILS rates are affine in Xt:

πo
t,m = Am,X + Bm,XXt + νm,t, (B.6)

where m indicates maturity in months, and Am,X and Bm,X are determined by the usual recur-

sions:

Am+1,X = Am,X + B′
m,XKQ

0,X + 1
2B′

m,XΩXBm,X − ρ0,X , (B.7)

Bm+1,X = Bm,XKQ
1,X − ρ1,X , (B.8)

initiated with A0,X = 0 and B0,X = 0. To ease notations, the A′s and B′s of the rates

that are matched by the model are often written in matrix form: AX = (..., Am,X , ...)′ and

BX = (..., Bm,X , ...)′. Measurement error terms are assumed to share the same variance across

maturities νm,t ∼ i.i.d. N(0, σ2
ν).

Joslin et al. (2011) show that considering the rates’ principal components, P, as perfectly

observed rotated factors greatly facilitates the estimation of the model. In short, Po
t = WΠo

t =

Pt = WΠt = WAX + WBXXt, where W is an N × J matrix of portfolio weights given by

the eigenvectors associated with the N greatest eigenvalues of the J rates in Πt (N < J), and



Πo
t and Πt collect all observed ILS rates and their model counterparts respectively. Given this

rotation, the model can be rewritten as:

Pt = KP
0,P + KP

1,PPt−1 + ϵPt,P , (B.9)

Pt = KQ
0,P + KQ

1,PPt−1 + ϵQt,P , (B.10)

πt = ρ0,P + ρ1,PPt, (B.11)

Πt = AP + BPPt + νt, (B.12)

where ϵPt,P , ϵQt,P ∼ i.i.d. N(0, ΩP), KP
0,P , KP

1,P , KQ
0,P , KQ

1,P , ΩP , ρ0,P , ρ1,P , AP and BP are

transformations of their counterparts in the model with X replacing P, and νt ∼ i.i.d. N(0, IJ ⊗

σ2
ν).

In this setup, the model can easily be estimated in two steps. The first step simply consists

in estimating KP
0,P and KP

1,P from Equation (B.9) by Ordinary Least Squares (OLS). Given these

OLS estimates, the second step consists in maximising the joint likelihood of equations (B.9)

and (B.12) over {kQ
∞, KQ

1,X , ΩP , σ2
ν}, taking care that AP and BP are the transformations of AX

and BX that obey the recursions in Equations (B.7)-(B.8). Conveniently, the set of parameters

{kQ
∞, σ2

ν} can be concentrated out of the likelihood function, which implies that the likelihood

(given KP
0,P and KP

1,P) is maximised by searching for the optimal diagonal matrix KQ
1,X and

the elements of the Cholesky decomposition of ΩP , which in total represents N ∗ (N + 3)/2

elements.7 If three principal components are considered (N = 3), only nine model parameters

must be estimated.

Appendix C Details of the Bauer and Rudebusch (2020) model

As shown by Bauer and Rudebusch (2020), Equations 3 can be recast into a VAR by defining

Zt = (π∗
t , Pt)′:

Zt = µZ + ΦZZt−1 + vt, vt ∼ N(0, ΩZ), (C.13)

where
7Concentrating σ2

ν out of the likelihood function is done by approximating it as the variance of the residuals
in Equation B.12 given AP and BP , see Joslin et al. (2011, footnote 24). Besides, kQ

∞ can be concentrated out of
the likelihood function as shown in Joslin, Le, and Singleton (2013).



µZ =

 0

(IN − Φ)P̄

, ΦZ =

 1 01×N

(IN − Φ)γ Φ

, and ΩZ =

 σ2
η γ′σ2

η

γσ2
η Ω

.

The innovations to Pt are ut = γηt + µ̃t and have covariance matrix Ω = γγ′σ2
η + Ω̃.
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