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/ / Motivation and scope

Objective
» Estimate Al/data-intensive jobs for the United Kingdom 2012-2022

e For 2015-2021 match data to two firm-level databases to generate insights on
productivity/export behaviour

Methodology

e Develop a natural language processing algorithm on online job
advertisements

* Classify jobs into data, as well as Al-related jobs
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The pros and cons of using online job advertisements

* Provided by Lightcast data, previously BurningGlass Technologies

* Job online advertisements are a measure of labour demand (flow as opposed to labour stock)
* No information about the quantity of hiring

* Recruitment agencies cause duplications

Advantages Disadvantages

Timely data (2012 — present) Decreasing quality of the data the further back
in the time (e.g., 2012 data are of worse quality
than 2023 data)

Linkage to firm-level and regional data Limited coverage depending on year and
country, no insights on how firms hire

Standardised occupation and industry Representativeness is heterogeneous (industry,
classifications occupation level; white collar jobs)

Identify skill demands beyond standard
labour market statistics
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/ / What are data/Al-intensive jobs?

* A data intensive job can be defined based on the data value chain
concept (Corrado et al. (2022) and Statistics Canada (2019))

* An Al intensive job is related to generic and specific, Al related skills
(Borgonovi et al. 2023)
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/ / Using natural language processing to estimate data/Al
intensity

1. Process the text data from the job advertisements

2. Extract skills/tasks that identify the job as involved in data production/related to

Al using natural language processing

3. Classify the job based on its link to data entry, database or data analytics

activities or Al-related skills

4. Aggregate the jobs to occupation, firm, industry, and economy level (data/Al

intensity score per occupation/firm/industry/economy)
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Classification and aggregation of data-intensive jobs

* Ajob is classified as data-intensive (1, else 0) if it passes the following criteria:

{ Criteria }
Cosine similarity Dispersion Occurence
measure measure measure
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Classification and aggregation of Al-related jobs

* Ajob is classified as Al-intensive (1, else 0) if it passes the following criteria:

{ Criteria }
Cosine similarity Dispersion Occurence
measure measure measure

[AI related key words ]
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/ / Matching Orbis to Lightcast data

* Matched Orbis data for the United Kingdom to Lightcast data

* Applied OpenCorporates OpenRefine Reconciliation API (version
0.4.8) to generate company IDs

* Facilitated matching (matching on ID vs. matching on names)

e Matching rates for 2022: validation via OpenCorporates (retained 77%
of original Lightcast firms =2 22% when matching to Orbis)
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// Data and Al-hiring intensity peaked during COVID in the UK

Data Intensity, per cent
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Source: Authors’ calculations based on Lightcast data.
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Data/Al intensive jobs are concentrated in London

UK regions, demand for data skills, 2022 UK regions, demand for Al skills, 2022
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Source: Authors’ calculations based on Lightcast data.
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Demand for data/Al skills by occupation differs

Data and Al-hiring intensity in per cent, 2022
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// Number of highly data intensive firms increased
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Source: Authors’ calculations based on Lightcast data.
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The group of data-intensive firms is heterogenous

Data intensity in per cent
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Source: Authors’ calculations based on Lightcast and Orbis data.
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Data-intensive companies are more productive and export

Average multifactor productivity levels, index Share of exports/total revenue, per cent, average 2015-2022
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Source: Authors’ calculations based on Lightcast and Orbis data.
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Data and non-data firms differ in the types of products traded

84 - Nuclear reactors, boilers, machinery

85 - Electrical machinery and equipment

90 - Optical, photographic, medical instruments
39 - Chemical products

73 - Iron or steel articles

49 - Printed books, newspapers, pictures

48 - Paper and paperboard

42 - Leather

38 - Plastics

94 - Furniture

61 - Apparel and clothing accessories (knitted)
82 - Tools, implements, cutlery, spoons and forks
63 - Textiles

87 - Vehicles

Exported products

62 - Apparel and clothing accessories (not knitted)
30 - Pharmaceutical products

40 - Rubber

83 - Metal

76 - Aluminium

96 - Manufactured articles (msc)
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Source: Authors’ calculations based on Lightcast/Orbis data and the UK trader dataset.
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// Take aways and new ideas

Contribution of our work

= Flexible NLP algorithm that can be extended across countries and time series; to 66 languages, as
well as beyond digital skills (e.g. green skills)

= Disaggregated insights into digital skills on labour markets (data as well as Al skills)
= Combine several data sources (online job advertisements, and two-firm-level databases)

= Provide a new methodology on how to match ORBIS with Lightcast data

Future work
= Extend the work to trade in services

= Expand the matching exercise to additional countries (ongoing at the OECD)
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Process the online job advertisements

* NLP captures the meaning and structure of a word/sentence in different contexts
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Source: Authors illustration based on (spaCy, 2022;5)




Tokenising and vectorising online job advertisements

Tokenisation
“A data scientist is a high-skilled * data scientist
professional who uses analytical, * high-skilled professional
statistical and programming — * analytical statistical
knowledge skills to analyse large programming knowledge skills
datasets.” * analyse large datasets
Vectorisation
Data analysis = [1.5, -0.4, 7.2, 19.6, 3.1, ., 20.2]
Data analytics = [1.5, -0.4, 7.2, 19.5, 3.2, ., 20.8]
your information = [7.5, -1.0, 7.2, 14.8, 2.8, ., 19.0]
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The average number of products traded are similar across firms
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Source: Authors’ calculations based on Lightcast/Orbis data and the UK trader dataset.
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High data-intensive professions are linked to data analytics

Top 10 data-intensive occupations in the United Kingdom, per cent, 2020
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Source: Authors’ calculation based on LightCast data.
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The distribution of data professions is highly unequal

A - United Kingdom, per cent, 2020 B- United States, per cent, 2020
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Differences across countries are bigger at industry level

Data intensity at industry level, per cent, 2020
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Source: Authors’ calculation based on LightCast data.

&) OECD

BETTER POLICIES FOR BETTER LIVES




Results at aggregate level are sensitive to changes in the
classification rule

Varying the similarity measure Varying the frequency measure

- Careful calibration of ’
classification rule
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- Order of magnitude of results
remains stable
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- Results vary larger for changes in
similarity measure, but with the
same magnitude across countries
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Source: Authors’ calculation based on LightCast data.
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