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Motivation and scope

Objective

• Estimate AI/data-intensive jobs for the United Kingdom 2012-2022

• For 2015-2021 match data to two firm-level databases to generate insights on
productivity/export behaviour

Methodology

• Develop a natural language processing algorithm on online job
advertisements

• Classify jobs into data, as well as AI-related jobs
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The pros and cons of using online job advertisements

Advantages Disadvantages

Timely data (2012 – present) Decreasing quality of the data the further back 
in the time (e.g., 2012 data are of worse quality 
than 2023 data)

Linkage to firm-level and regional data Limited coverage depending on year and 
country, no insights on how firms hire

Standardised occupation and industry 
classifications

Representativeness is heterogeneous (industry, 
occupation level; white collar jobs)

Identify skill demands beyond standard 
labour market statistics

• Provided by Lightcast data, previously BurningGlass Technologies
• Job online advertisements are a measure of labour demand (flow as opposed to labour stock)
• No information about the quantity of hiring 
• Recruitment agencies cause duplications
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What are data/AI-intensive jobs?

• A data intensive job can be defined based on the data value chain 
concept (Corrado et al. (2022) and Statistics Canada (2019))

• An AI intensive job is related to generic and specific, AI related skills 
(Borgonovi et al. 2023)
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Methodology
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Using natural language processing to estimate data/AI 
intensity

1. Process the text data from the job advertisements

2. Extract skills/tasks that identify the job as involved in data production/related to 

AI using natural language processing

3. Classify the job based on its link to data entry, database or data analytics 

activities or AI-related skills

4. Aggregate the jobs to occupation, firm, industry, and economy level (data/AI 

intensity score per occupation/firm/industry/economy)
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Classification and aggregation of data-intensive jobs

• A job is classified as data-intensive (1, else 0) if it passes the following criteria:

Criteria

Cosine similarity 
measure

Dispersion 
measure

Occurence
measure
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Classification and aggregation of AI-related jobs

• A job is classified as AI-intensive (1, else 0) if it passes the following criteria:

Criteria

Cosine similarity 
measure

Dispersion 
measure

Occurence
measure

AI related key words



© OECD

Matching Orbis to Lightcast data

• Matched Orbis data for the United Kingdom to Lightcast data

• Applied OpenCorporates OpenRefine Reconciliation API (version 
0.4.8) to generate company IDs 

• Facilitated matching (matching on ID vs. matching on names)

• Matching rates for 2022: validation via OpenCorporates (retained 77% 
of original Lightcast firms  22% when matching to Orbis)
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Results
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Data and AI-hiring intensity peaked during COVID in the UK

Data Intensity, per cent

Source: Authors’ calculations based on Lightcast data.
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Data/AI intensive jobs are concentrated in London 

UK regions, demand for data skills, 2022 UK regions, demand for AI skills, 2022

Source: Authors’ calculations based on Lightcast data.
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Demand for data/AI skills by occupation differs

Source: Authors’ calculations based on Lightcast data.

Data and AI-hiring intensity in per cent, 2022
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Number of highly data intensive firms increased

Source: Authors’ calculations based on Lightcast data.
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The group of data-intensive firms is heterogenous

Data intensity in per cent

Source: Authors’ calculations based on Lightcast and Orbis data.
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Data-intensive companies are more productive and export 

Average multifactor productivity levels, index Share of exports/total revenue, per cent, average 2015-2022

Source: Authors’ calculations based on Lightcast and Orbis data.
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Data and non-data firms differ in the types of products traded

Source: Authors’ calculations based on Lightcast/Orbis data and the UK trader dataset.
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Take aways and new ideas

Contribution of our work 

 Flexible NLP algorithm that can be extended across countries and time series; to 66 languages, as 
well as beyond digital skills (e.g. green skills)

 Disaggregated insights into digital skills on labour markets (data as well as AI skills)

 Combine several data sources (online job advertisements, and two-firm-level databases)

 Provide a new methodology on how to match ORBIS with Lightcast data

Future work

 Extend the work to trade in services

 Expand the matching exercise to additional countries (ongoing at the OECD)
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Questions?
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Process the online job advertisements

• NLP captures the meaning and structure of a word/sentence in different contexts

Source: Authors’ illustration based on (spaCy, 2022[43])
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Tokenising and vectorising online job advertisements

Tokenisation

Vectorisation

Data analysis    = [1.5, -0.4, 7.2, 19.6, 3.1, ..., 20.2]
Data analytics   = [1.5, -0.4, 7.2, 19.5, 3.2, ..., 20.8]
your information = [7.5, -1.0, 7.2, 14.8, 2.8, ..., 19.0] 
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The average number of products traded are similar across firms

Source: Authors’ calculations based on Lightcast/Orbis data and the UK trader dataset.
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High data-intensive professions are linked to data analytics

Top 10 data-intensive occupations in the United Kingdom, per cent, 2020

Source: Authors’ calculation based on LightCast data.
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The distribution of data professions is highly unequal

A - United Kingdom, per cent, 2020 B- United States, per cent, 2020

Source: Authors’ calculation based on LightCast data.
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Differences across countries are bigger at industry level 

Data intensity at industry level, per cent, 2020

Source: Authors’ calculation based on LightCast data.
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Results at aggregate level are sensitive to changes in the 
classification rule

- Careful calibration of 
classification rule

- Order of magnitude of results 
remains stable

- Results vary larger for changes in 
similarity measure, but with the 
same magnitude across countries

Source: Authors’ calculation based on LightCast data.
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