Assessing Economic Risks Around forecasts:

A mixture of fined-tuned BERT and economic experts

Manuel Betin, Thomas Chalaux, Marnix Dek, David Turner

BDF/OECD Innovation Lab conference, 13-06-2024

Leveraging Natural Language Processing (NLP) to answer economic questions

Motivation and Research Question

1. A Simple framework of Risks Around Forecasts (RAF)

- 2. Description of the Corpus
- 3. Text Estimation
- 4. Macroeconomic Estimation
- 5. Results and conclusions

The balance of risks around this central case is on the downside. First, the global financial system remains vulnerable [...]. [...] availability of credit may tighten by more than assumed in the central projection [...]. [...] any significant decline in asset prices could materially weaken household and corporate balance sheets [....]

Source: BoE Forecasts and Macroeconomic Risk Assessment (2007)

- 1. Can **Risks Around Forecast** be estimated using the Economic Outlook of the OECD?
- 2. Are Risks Around Forecast **leading indicators** of future GDP growth?
- 3. Are Risks Around Forecast correlated with GDP growth **Forecast Errors**?

4. Can Risks Around Forecast be used to provide **Risk Adjusted GDP growth forecasts scenarios**?

1. A Simple Risk Framework

A Simple Framework to measure Risk Around Forecast (RAF)

 Z_{ct} = **Total** Risk around forecast of country c at time t

 G_t = Possible future macroeconomic developments in the **GLOBAL** that could affect negatively (positively) the growth forecast

 I_{ct} = Possible future **SPECIFIC** macroeconomic developments in the country that could affect negatively (positively) the growth forecast

Estimating Risks Around Forecasts (RAF) from text

Use the text of the Economic Outlook published by the OECD to estimate G_t and I_{ct}

 $G_t = f(LLM(GA_t))$

where

f(.) is a weighted average of the risk score of each risk sentence
LLM(.) is a Transformer based text classifiers
GA= General Assessment of the Economic Outlook published at time t

(3)
$$I_{ct} = g(LLM(CN_{ct}))$$

(2)

where

g(.) is a weighted average of the risk score of each risk sentence
LLM(.) is a Transformer based text classifier
CN= Country Note of country c in the Economic Outlook published at time t

A Simple Framework of Risk-Adjusted Growth Forecasts

 $\hat{g}_{ct+1}^{adj} = \hat{g}_{ct+1} + \beta_c * Z_{ct}$ $\hat{g}_{ct+1}^{adj} = \hat{g}_{ct+1} + \beta_c * (\alpha_c * G_t + I_{ct})$ (4)+(1) $\hat{g}_{ct+1}^{adj} = \hat{g}_{ct+1} + \beta_c * (\alpha_c * f(LLM(GA_t)) + \beta_c g(LLM(CN_{ct})))$ (4)+(1)+(2)+(3) $\hat{g}_{ct+1}^{adj} = \hat{g}_{ct+1} + \beta_c \alpha_c * f(LLM(GA_t)) + \beta_c g(LLM(CN_{ct})))$ Global Risk from Idiosyncratic Risk **Baseline Forecast Risk Adjusted Forecast** the General from Country Notes Assessment Country specific Global Qualitative Country + Global **Quantitative Qualitative** expertise (Model based) expertise expertise

A Simple Framework of Risk-Adjusted Growth Forecasts

Text estimation of f(LLM(.)) and g(LLM(.))

A Simple Framework of Risk-Adjusted Growth Forecasts

2. Description of corpus

Summary statistics of the text of the Economic Outlook (General Assessment (GA) + Country Notes (CN))

Number of sentences

The format of the EO has changed overtime:

- Shorter sentences
- Less sentences per page (more figures)
- Less rich vocabulary

But the **text similarity** across period and countries is particularly high suggesting a homogeneous corpus across time and countries

2. Text Estimation

- 1. Compile/Create labeled training datasets (in-house)
- 2. Fine-tune existing foundation model for text classification (*Huggingface + Python + Transformer*)
- **3. Predict** on each sentence
- 4. Evaluate the accuracy of the model (out-of-sample accuracy and benchmark against expert judgment)
- 5. Aggregate individual risk sentences into total risk text : f(.) and g(.)

Finetuned text classifiers on each sentence of the EO

 $Accuracy = \frac{True \ positive \ (TP) + True \ negative \ (TN)}{sample \ size \ (N)}$

Table.3. Evaluation Metrics on test sample

Out-of-sample prediction relatively satisfactory but could be improve with using **more capable LLMs** models or **increase the sample size for finetuning** ...

... Although the scoring of risk does not make a complete **consensus among human experts**

Comparison BERT vs economic experts: Confusion matrix

Findings from a survey on 50 experts of the Economic Department that scored selected risks paragraphes

- BERT tend to be slightly more **optimistic** than experts but results depend on the final aggregation function (from sentence to paragraph)
- **Disagreement among experts** is high for positive risks and between very negative and negative.
- The **type of risk** (i.e financial) or country (EMEs) matters for the judgment of experts

Estimated RAF sentences and score in Country Notes

Figure .X. Proportion of RAF Sentences in Country Notes

Figure .X. Proportion of RAF Sentences by Country and Score

The proportion of Country Notes allocated to risks has increased overtime (~ 5 sentences per CN)

On average risks are mainly to the **downside** but cover both positive and negative risks.

Calibrating the aggregation function: g(.) and f(.) from RAF sentence to RAF paragraphs

Weighted average of the risk score of each risk sentence

Average of the risk score of each risk sentence

4. Macroeconomic estimation

Specifications

- $(2)g_{ct} = \propto_1 g_{ct-1} + \beta_G^g G_{t-1} + \beta_I^g I_{ct-1} + \theta_{1c} + \varepsilon_{1ct}$
- (4) $R_{ct} = \propto_2 g_{ct-1} + \beta_G^R G_{t-1} + \beta_I^R I_{ct-1} + \theta_{2c} + \varepsilon_{2ct}$
- (6) $C_{ct} = \propto_3 g_{ct-1} + \beta_G^C G_{t-1} + \beta_I^C I_{ct-1} + \theta_{3c} + \varepsilon_{3ct}$

- Is RAF index one semester ahead and Real GDP growth yoy correlated?
- Is RAF index one semester ahead and **Soft Recessions** correlated?

Is RAF index one semester ahead and **Severe Recession** correlated?

- g_{ct} = Real gdp growth rate R_{ct} = Dummy equal to 1 if GDP growth (yoy) between -2 and 0 % C_{ct} = Dummy equal to 1 if GDP growth (yoy) below -2 %
- G_t = Global Risk Around Forecast index
- *I*_{ct} = Idiosyncratic Risk Around Forecast index
- $\delta_t = \mathit{Time fixed effect}$
- $heta_c = ext{ Country fixed effect}$

Downside risk correlated to **economic slowdown**

Downside risk correlated with higher probablity of **soft recession**

Downside risk correlated with higher probability of **severe recession**

Estimation: Is RAF correlated with the business cycle?

	Dependent variable:					
	GDPV y (1)	/0y (2)	Soft crisis ((3)	(1 if -2 <g<0) (4)</g<0) 	Severe crisis (1 (5)	if g< -2) (6)
lag1_GDPV_yoy	0.616*** (0.015)	0.575*** 0.016)	-0.048*** (0.002)	-0.050*** (0.002)	-0.032*** (0.001)	-0.033*** (0.002)
Lag1_score	0.264** (0.115)	p_{I} 0.342*** 0^{g} (0.118)	-0.045*** (0.014)	β^R_I -0.034** (0.014)	-0.040*** β ř (0.011)	-0.031*** (0.011)
Lag1_score_GA	0.543*** (0.106)	PG 0.565*** (0.107)	-0.038*** (0.013)	β_G^R (0.035***)	β_{G}^{c}	-0.008 (0.010)
Constant	1.519*** (0.118)	1	0.206*** (0.014)	1	0.120*** (0.011)	1
Time FE Country FE Observations R2 Adjusted R2 F Statistic	NO NO 2,455 0.406 0.406 559.158*** (df = 3; 2451) 4	Yes Yes 2,455 0.360 0.348 452.370*** (df = 3; 2408) 2	NO NO 2,455 0.221 0.220 31.115*** (df = 3; 2451)	Yes Yes 2,455 0.223 0.208 229.894*** (df = 3;	No No 2,455 0.169 0.168 2408) 166.668*** (df = 3; 2451) 169	Yes Yes 2,455 0.174 0.158 0.094*** (df = 3; 2408)
Note:			/		*p<0.	1; **p<0.05; ***p<0.01
Both global and Idiosyncratic risks are correlated with economic slowdowns in next semester		Both global ar risks are corre recession in n	Both global and Idiosyncratic risks are correlated with SOFT recession in next semester		nly Idiosyncratic risks are prrelated with EVERE recessions in next emester	

Estimation: Can RAF index reduce forecast errors ?

Step 1:
$$g_{ct} = \gamma * \widehat{g_{ct}} + \delta_t + \theta_c + \varepsilon_{ct}$$

Step 2: $\varepsilon_{ct} = \beta_G^{\varepsilon} G_{t-1} + \beta_I^{\varepsilon} I_{ct-1} + \mu_{ct}$

 $g_{ct} = Realized real GDP growth (yoy)$ $\widehat{g_{ct}} = 1$ year ahead forecast ε_{ct} = forecast error

An example of Risk Adjusted Forecasts

$$Estimated \longrightarrow \beta_{I}^{g} = 0.34 \quad \beta_{G}^{g} = 0.56$$
GDP Growth forecast (yoy) = 1.5%
$$\begin{array}{c} g_{ct}^{adj} = 1.5\% + 0.34 * (1) + 0.56 * (1) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (0) + 0.56 * (0) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (0) + 0.56 * (0) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (0) + 0.56 * (0) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (-1) + 0.56 * (-1) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (-1) + 0.56 * (-1) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (-1) + 0.56 * (-1) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (-1) + 0.56 * (-1) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (-2) + 0.56 * (-2) \\ g_{ct}^{adj} = 1.5\% + 0.34 * (-2) + 0.56 * (-2) \\ g_{ct}^{adj} = -0.3 \% \end{array}$$

- 1. Economic Publications are very rich text material for economic analysis
- 2. Recent AI developments has democratised advanced NLP tools for classification/extraction/search etc..
- 3. Combining expert knowledge and LLM capabilities can help ground a scenario-based forecast approach.
- 4. The switching cost to a more advanced model is straightforward but improvements probably will not come from just having a more powerful LLM but from adjusting for economic relevant preferences/nuances